Road Extraction on Remote Sensing Imagery

October 29, 2020

Principal Investigator: Dr. Zhengyuan Zhu

Research assistants: Ricardo Batista, Minsung Jang, and Hao Sun

Xin Zhang

Student advisor:

CSSM

Table of contents

- I. Project overview
- II. Building a training dataset
- III. Training and results
- IV. Next steps

I. Project overview

Automated road extraction and change detection

Classification task is non-trivial

The classifier should take into consideration a sort of context \implies neural nets

Project timeline

Results summary

We have achieved \approx 80% dice score with models trained on 30k images

Model	Dice score
AD-LinkNet	0.78
UNet	0.78
GLNet	0.72

We are now extracting roads on 2005-2017 satellite time series

II. Building a training dataset

Why use Google dataset?

The current <u>NRI dataset</u> consisting of 5k remote sensing image and road annotation image pairs ...

- is **small** considering task difficulty and modeling limitations,
- contains numerous instances of poorly annotated roads from machine learning perspective (see example right), and
- is kept in a specialized server to ensure confidentiality but which has limited computing capacity.

Problematic image type: coarse annotation

Problematic image type:

omission of major roads (not NRI road?)

Google Maps dataset

- Google provides a comprehensive public API for Google Maps
 - The parameters include centroid coordinates, layers (e.g., road) and physical scale (selected as 0.5×0.5 miles² to match the NRI dataset)
- Our initial sample consisted of 40k random coordinates of the contiguous U.S. territory matching the NRI sample

 Though generally accurate, certain image pairs do contain certain annotation errors

Human verification

Check 1: Is a main (a.k.a., common use) road missing?

Check 2: Is a road only partially captured?

Check 3: Did Google create a road that DNE?

Special cases (i.e., other image errors)

Shortcomings of the training dataset Treatment of minor roads

Google is inconsistent with its treatment of **minor roads** (e.g., driveways, farm access roads, parking aisles).

Shortcomings of the training dataset Potential class imbalance

Potential **class imbalance**: there are <u>many</u> satellite images with no roads whatsoever.

III. Training

Modeling overview

Stage 1

Dataset for training

Model

 NRI 5k images (4 states) • UNet

Stage 2

Dataset for training

 Google 30k images (49 states)

Models

- UNet
- AD-LinkNet
- GLNet

Selected methods

- Model per land use type
- Transfer learning
- Hyperparameter
 optimization

Datasets

- Original NRI dataset (4,979 image pairs)
 - IA: 1644, FL: 1165, OR: 672, ND: 1498
- Google Maps: (31,981 image pairs)
 - Random coordinates across contiguous
 U.S. (49 states). As such, includes road-free locations.
 - Filtered from original 38,641 images via visual inspection
- NRI time series dataset (size TBD)

Models

Classical Convolutional Neural Network structure

Loss function

 We use pixel-level dice loss (i.e., 1 – dice score) to measure the estimation and prediction performance

U-Net

- Winner of 2015 ISBI challenge for biomedical segmentation
- > The architecture looks like a 'U' shape
- Left: encoder; Right decoder

- Pixel-wise Prediction
- Image in; segmentation out
- Requires less training images
- Reduce overfitting by design

AD-LinkNet

FIGURE 2. The structure diagram of AD-LinkNet.

- Winner of CVPR's 2018 DeepGlobe road extraction competition
- Short for attention dilation-Linknet

- Serial parallel combination dilated convolution
- Channel-wise attention mechanism

Ref. (Chen, Wuyang, et al, 2020 IEEE)

CSSM

Methods

Build a model per land use type

 To improve model performance, we classified the images (as either rural or urban) by land use types and then trained a model on each of the two sets of images.

Image classification | Google dataset

- We classified an image as "rural" or "urban" based on the Cropland Data Layer (CDL), which assigns land use categories to 30-meter pixels.
- If ≥ 20% of the CDL pixels for the ≈ 0.5 × 0.5 mi² area captured by a Google satellite image is "developed" land, we label it "urban." Otherwise, the image is "rural."
- Urban ratio (UR) = (number of developed land CDL pixels) / (total CDL pixels)
 - UR > 0.2 \rightarrow urban type: 7.9% of total dataset (2526 images)
 - UR \leq 0.2 \rightarrow rural type : 92.8% of total dataset

Google Maps

CDL Image

UR = 0.2

UR = 1.0

Image classification | Original NRI dataset

- The metadata for each image includes the **3 most representative land use types**. (*Repeated land use types allowed for a single image.*)
- We classify an image as "urban" if either
 - 1. one of its 3 land use types is "large urban," or
 - 2. the list of 3 types consists entirely of "small urban" or "public road."
- Otherwise, we classify each image as "rural"

Transfer learning

CSSM

Hyperparameter optimization

Programmatic hyperparameter optimization

CSSM

Results

Stage 1

Stage 1 | Original NRI dataset

	Rural				Urba	n			Total				
Model	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	
U-Net	0.45	0.28	0.45	0.50	0.35	0.21	0.36	0.28	0.44	0.28	0.43	0.49	

Original NRI dataset | Example 1 (rural)

Original NRI dataset | Example 2 (semi-developed)

Original NRI dataset | Example 3 (urban)

Stage 2

Stage 2 | Google dataset

	Rural				Urban				Total				
Model	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	
AD-LinkNet (TL*)	0.79	0.32	0.86	0.83	0.73	0.14	0.74	0.75	0.78	0.31	0.85	0.82	
U-Net (TL)	0.78	0.32	0.84	0.84	0.72	0.15	0.74	0.74	0.78	0.31	0.83	0.83	
GLNet (TL)	0.73	0.35	0.88	0.75	0.62	0.24	0.68	0.69	0.72	0.35	0.86	0.75	

Ad-LinkNet

U-Net

Mean : 0.775

Stddev: 0.312

images: 6435

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Dice Score

0.7 0.8 0.9 1.0

)00

500

)00 500)00

500 -

0 -

GLNet

Google dataset | Example 1 (rural)

Ground truth

KY_0388

Google dataset | Example 2 (semi-developed)

WI_0796

Google dataset | Example 3 (urban)

Stage 2 | Original NRI dataset

Stage 1: trained on original NRI dataset

	Rural				Urba	n			Total				
Model	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	
U-Net	0.45	0.28	0.45	0.50	0.35	0.21	0.36	0.28	0.44	0.28	0.43	0.49	

<u>Stage 2</u>: trained on **Google dataset**

	Rural				Urba	n			Total				
Model	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	Dice	SE	Prec.	Recall	
AD-LinkNet (TL*)	0.56	0.23	0.63	0.61	0.51	0.15	0.49	0.59	0.56	0.22	0.62	0.61	
U-Net (TL)	0.54	0.22	0.57	0.63	0.48	0.16	0.47	0.58	0.54	0.22	0.56	0.62	

Dice score histograms

U-Net (Stage 1)

Ad-LinkNet

NRI dataset | Example 1 (rural)

NRI dataset | Example 2 (semi-developed)

NRI dataset | Example 3 (urban)

U-Net (Stage 1)

Ad-LinkNet

U-Net (Stage 2)

CSSM

Stage 3

Example 1

Model: AD-LinkNet (transfer learning, rural)

Example 2

Model: AD-LinkNet (transfer learning, rural)

CSSM

Example 3

Model: AD-LinkNet (transfer learning, rural)

CSSM

IV. Next steps

Next steps

- Determine change detection thresholds
- **Classification of NRI images by terrain type** (so we can then fit a separate model for each class)
- Conformal prediction
- Hyperparameter optimization
- Consider training on higher resolution images
- Alternate loss functions
- Post-processing
- Run models longer
- Promising tweaks to GLNet
- Deeper version of UNet

Classification of NRI images

- The pre-defined land use types in NRI, similar to CDL for Google help to advance the classification performance
- Select a representative class out of the polygons for certain types

Questions?

