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Motivation
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Motivation

Goal

Automated road extraction and change detection.
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Motivation

Approach combining available best-in-class methods

Current best possible approach for road extraction, i.e., CNN segmentation →
time-specific post-processing → pixelwise temporal smoothing, leaves room for

improvement.
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Motivation

Proposed approach

Leverage nature of road network: it is graph-like (i.e., road segments are nodes and

junctions are edges) and relatively invariant over time.
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Model formulation
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Model formulation

Hidden Markov Random Field

Suppose we model the road network time series at location k with a

Hidden Markov Random Field (HMRF)

A bivariate probability distribution PX ,Y defined on an random graph
(here understood as an undirected graph generated by a random
process) with node set S defined by

PX is a MRF

the conditional independence property f (y |x) =
∏

i∈S f (yi |xi )

where X ’s behavior is not directly observable (”hidden”).
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Model formulation

Hidden Markov Random Field

That is, for node i ∈ S = {1, . . .N},
PX is defined by P(xi | xS−{i}) = P(xi | xNi

) where neighborhoods
are defined by the edges of the underlying undirected graph, and

P(yi | yS−{i}, x) = P(yi | xi ).

Figure 1: Abstracted HMRF where X is defined on the graph nodes (white) and
Y (grey nodes) depends solely on the values of X .
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Model formulation

Computationally convenient Gibbs formulation

The Hammersley-Clifford Theorem states that the joint probability
distribution of a Markov field PX is a Gibbs distribution (for which we use
the notation PG ) given by density

PG (x) =
1

W (β)
exp {−βH(x)} =

1

W (β)
exp

{
−β

∑
c

Vc(xc)

}

where

the sum is over all cliques c in the graph

xc = {xi ∈ x : i ∈ c}
each Vc is a clique potential (i.e., any positive function that depends
only on the nodes in clique c)

W (β) :=
∑

x exp{−βH(x)} is just the normalizing constant

RB & HS (ISU STAT) HMRF November 11, 2021 10 / 52



Model formulation

Implication of Hammersley-Clifford

The Gibbs formulation of PX allows us to easily compute the probability of
Xi given its neighbors

PG (xi |xN(i)) =
exp

{
−β

∑
c∋i Vc(xc)

}∑
xi
exp

{
−β

∑
c∋i Vc(xc)

}
where N(i) ⊂ S are the neighbors of i . We will leverage this fact
repeatedly.

Figure 2: Recall that a clique is a vertex set
such that every pair of vertices is adjacent
(so A, B, C, and D are all cliques).
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Undirected Graph

Undirected Graph
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Undirected Graph

Spatiotemporal graph

Each node s(t,i) is the stretch of land at position i at time t. Note s(t,i) may not be

covered by road at time t, i.e. X (s(t,i)) := X(t,i) might equal 0 (shown in grey below).
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Undirected Graph

Base undirected graph

The base undirected graph is the largest partition created from the algebra of the union

of the t = 2005, ..., 2018 road fragments (but is built sequentially in practice). We can

produce each Gt either based on the output of RoadTracer or post-processing.
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Undirected Graph

RoadTracer

RoadTracer [Bastani et al., 2018] uses an iterative search process guided by a

CNN-based decision function to derive the road network graph directly from the image

and a (good) starting point for image exploration.
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Random variable definition

Random variable definition
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Random variable definition

Unobserved r.v.

Unobserved variable xt,i : a binary variable, i.e. xt,i ∈ {0, 1},
representing the stretch of land si is covered by road or not in year t

Neighbor set of xt,i : define Ns
ti = {xt,j : (xt,i , xt,j) ∈ E} as its spatial

neighbour set and Nt
ti = {xt−1,i , xt+1,i} as its temporal neighbour set,

so that P(xt,i | X/{xt,i}) = P(xt,i | Ns
ti ,N

t
ti ).

Conditional distribution: xt,i | Ns
ti ,N

t
ti ∼ Ber(pti ) where

pt,i =
exp[β1

∑
xj∈Ns

ti
δ(xt,i − xj) + β2

∑
xj∈Nt

ti
δ(xt,i − xj)]∑1

x=0 exp[β1
∑

xj∈Ns
ti
δ(x − xj) + β2

∑
xj∈Nt

ti
δ(x − xj)]
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Random variable definition

Observed r.v.

Choices for observed random variable (vector) yt,i :

y1 ∈ {0, 1}: AD-LinkNet/RoadTracer prediction
y2 ∈ [0, 1]: Averaged conformal probability

y3 ∈ [0, 1]di : Raw RGB vector from satellite image, or pixel-wise
conformal probability output, pixel-wise sigmoid output

Based on the type of yt,i , We can assume the following conditional model
of f (yt,i | xt,i )

yt,i | xt,i ∼ Bern(pt,i ), if yt,i ∈ {0, 1}
yt,i | xt,i ∼ Beta(αt,i , βt,i ), if yt,i ∈ [0, 1]

yt,i | xt,i
i .i .d∼ fxt,i (r , θt,i ) if yt,i ∈ [0, 1]di
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Random variable definition

Functional Data Example

In the third case, we assume that the density function fxt,i (r , θt,i ) has form
like

fxt,i (r , θt,i ) = θ′t,iβt,i (r) + ϵ(r), r ∈ [0, 1]

and the di dimension random vector yt,i is assumed as a sample draw from
fxt,i (r , θt,i ).

Figure 3: Example
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Parameter estimation

Parameter estimation
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Parameter estimation

Context

We make the following standard assumptions about the HMRF:

PX ,Y is a parametric family with parameter Ψ = (θ, β) and density

p(x , y |Ψ) = f (y |x , θ)p(x |β)

where fi (yi |xi , θ) have known forms.

each xi ∈ L = {1, ..., l} so x ∈ L|S | (in our case, L = {0, 1})

each yi can be multivariate

θ is also of general form, typically θ = (θ1, ..., θl) (e.g., θ = (θ0, θ1))

β ∈ R (scalar β for simplicity; in our case β = (β1, β2)) at least
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Parameter estimation

Overview of estimation methods

Suppose we observe Y = y and seek to perform inference on Ψ and x .
This is an overview of the common estimation approaches (Celeux et al.
[2003]):
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Parameter estimation

Section organization

We will walk through the EM algorithm starting with the exact
distributions and, when the procedure becomes intractable, we resort
to the relevant model approximations.

Focus is on “approach 2” since the MCMC simulations of “approach
1” require a large amount of computation.
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Parameter estimation

General EM algorithm

Suppose we have random variables X (unobserved) and Y (observed) with
(complete data) likelihood

L(θ, β) = p(y , x |θ, β) = f (y |x , θ)p(x |β)

Let Ψ = (θ, β). The EM algorithm seeks the MLE of the marginal
likelihood p(y |Ψ) by iteratively applying these two steps:

E step: Compute

Q(Ψ|Ψ(q)) = EX |Y ,Ψ(q) [log p(y ,X |Ψ)]

M step: Get
Ψ(q+1) = argmax

Ψ
Q(Ψ|Ψ(q))
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Parameter estimation

Simplification

Q(Ψ|Ψ(q)) = EX |Y ,Ψ(q) [log p(y ,X |Ψ)]

= EX |Y ,Ψ(q) [log f (y |x , θ)] + EX |Y ,Ψ(q) [log p(x |β)]

The first term does not depend on β while the second does not involve θ.
Therefore we will write

Q(θ|Ψ(q)) = EX |Y ,Ψ(q) [log f (y |x , θ)]

Q(β|Ψ(q)) = EX |Y ,Ψ(q) [log p(x |β)]
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Parameter estimation

Since the number of hidden states are finite and the observed variable Y is
conditionally independent given X , we can simplify

Q(θ|Ψ(q)) =
∑
x

log [f (y |x , θ)] p(x |y ,Ψ(q))

=
∑
i∈S

∑
x

log [fi (yi |xi , θ)] p(x |y ,Ψ(q))

=
∑
i∈S

∑
xi

log [fi (yi |xi , θ)] p(xi |y ,Ψ(q))

Q(β|Ψ(q)) =
∑
x

log [p(x |β)] p(x |y ,Ψ(q))

But now we’re stuck: we don’t have expressions for p(x |β), p(x |y ,Ψ(q)),
nor p(xi |y ,Ψ(q)), and summing over all x is intractable. We turn to the
Gibbs formulation and model approximation.
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Parameter estimation

First implication of Hammersley-Clifford

Recall H-C says that if PX is a MRF, it is a Gibbs distribution, i.e., we can
express the density of X as PG (x |β) = exp{−β

∑
c Vc(xc)}.

This formulation of PX allows us to easily compute the probability of Xi

given its neighbors

PG (xi |xN(i)) =
exp

{
−β

∑
c∋i Vc(xc)

}∑
xi
exp

{
−β

∑
c∋i Vc(xc)

}
where N(i) ⊂ S are the neighbors of i . We will leverage this fact
repeatedly.
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Parameter estimation

Second implication of Hammersley-Clifford

Expressing the density of X in Gibbs form (i.e., PG (x |β))

PG (y , x |θ, β) = f (y |x , θ)PG (x |β)

= W (β)−1
∏
i∈S

fi (yi |xi , θ)
∏
c

exp{−Vc(xc |β)}

= W (β)−1 exp

{∑
i∈S

log fi (yi |xi , θ)−
∑
c

Vc(xc |β)

}

∝ P(x |y , θ, β)

reveals that PX |Y is another MRF since, clearly, we can group the terms
in the exponent into the graph’s cliques, making this a Gibbs random field.
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Parameter estimation

Approach 1 – Overview

”Approach 1” estimates the quantities

Q(θ|Ψ(q)) =
∑
i∈S

∑
xi

log [fi (yi |xi , θ)]PG (xi |y ,Ψ(q)) (1)

Q(β|Ψ(q)) =
∑
x

log [p(x |β)] p(x |y ,Ψ(q))

≈
∑
i∈S

∑
x
N(i)

log
[
PG (xi |xN(i), β)

]
PG (xN(i)|y ,Ψ

(q)) (2)

where (1) is the exact quantity but uses the Gibbs form, and (2) uses the
pseudolikelihood introduced by Besag [1975]. (Note N(i) = N(i) ∪ {i}.)
The conditional probabilities PG (xi |y ,Ψ(q)) and PG (xN(i)|y ,Ψ

(q)) are

approximated using MCMC since they cannot be computed exactly.
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Parameter estimation

Pseudo-likelihood

We won’t dwell on “Approach 1” (given the MCMC computational
demands) beyond showing the widely-used pseudo-likelihood:

An approximation of the likelihood PG (x) = W−1exp(−H(x)) is the
pseudo-likelihood introduced by Besag [1975] and defined as

PL (x) =
∏
i∈S

PG (xi |xN(i))

where N(i) denotes the set of neighbors of i . Recall from our coverage of
the Gibbs distribution that each term in the product is easy to compute,

PG (xi |xN(i)) =
exp

{
−
∑

c∋i Vc(xc)
}∑

xi
exp

{
−
∑

c∋i Vc(xc)
} .
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Parameter estimation

Approach 2 – Overview

“Approach 2” uses the mean field approximation principle to
approximate MRF PX and then PX |Y to obtain

Q(θ|Ψ(q)) =
∑
i∈S

∑
xi

log [fi (yi |xi , θ)]PG (xi |y ,Ψ(q))

≈
∑
i∈S

∑
xi

log [fi (yi |xi , θ)]Px̃ (q)(xi |yi ,Ψ(q))

Q(β|Ψ(q)) =
∑
x

log [p(x |β)] p(x |y ,Ψ(q))

≈
∑
i∈S

∑
xi

log [Px̃ (q)(xi |β)]Px̃ (q)(xi |yi ,Ψ(q))

where the Px̃ (q)(xi |·) are approximations based on configuration x̃ (q)

obtained either via the mean, mode, or simulated field algorithm.
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Parameter estimation

The mean field approximation principle

The mean field approximation is originally a method to
approximate the mean of a MRF PX and can be used to provide an
approximation of its distribution.

The idea: approximate the effect of all the other sites on any given
site i by a single constant effect

For instance, for all j different from i , we fix the Xj ’s to their mean
value EG [Xj ], denoted by mj for all j ∈ S \ {i}.

The resulting system behaves as one composed of independent
variables for which computation gets tractable:

PG (x) ≈
∏
i∈S

Pmf
i (xi ) =

∏
i∈S

PG (xi |mN(i))
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Parameter estimation

Energy function for site i

We begin by defining a new energy function for site i . Recall

PG (x) = W−1 exp {−H(x)} = W−1 exp

{
−
∑
c

Vc(xc)

}
,

where dependence on parameter β has been made implicit. Then then let

Hmf
i (xi ) := H(x)|xj=mj , j ̸=i =

∑
c∋i

Vc

(
(xi ,mc\{i})

)
+
∑
c ̸∋i

Vc (mc)

= Hmf loc
i (xi ) + Rmf loc

i (mS\{i})

where m := {mi : i ∈ S}, and subsets mS\{i}, mc , and mc\{i} are

analogously defined. Crucially, note we can decompose Hmf
i (xi ) into the

mean field local energy at pixel i , denoted by Hmf loc
i (xi ), and a term,

Rmf loc
i (mS\{i}), that does not depend on xi .
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Parameter estimation

Approximation of PG (xi)

The mean field theory suggests that the marginal distribution of the field
at site i,

PG (xi ) = W−1
∑

xS\{i}

exp(−H(x))

can be approximated by

Pmf
i (xi ) = Wmf

i
−1

exp(−Hmf
i (xi )) = Wmf loc

i
−1

exp(−Hmf loc
i (xi )),

where

Wmf
i :=

∑
xi

exp(−Hmf
i (xi )) and Wmf loc

i :=
∑
xi

exp(−Hmf loc
i (xi )),

which is also the conditional probability of Xi given XN(i) = mN(i), i.e.,

Pmf
i (xi ) = PG (xi |mN(i))
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Parameter estimation

Calculation sidebar

Note equality

Wmf
i

−1
exp(−Hmf

i (xi )) = Wmf loc
i

−1
exp(−Hmf loc

i (xi ))

from the previous slide is just simple arithmetic:

Pmf
i (xi )

= Wmf
i

−1
exp(−Hmf

i (xi ))

=

−
∑
xi

exp(−Hmf
i (xi ))

 exp(−Hmf
i (xi ))

=

∑
xi

exp
{
Hmf loc

i (xi ) + Rmf loc
i (mS\{i})

} exp
{
−Hmf loc

i (xi ) − Rmf loc
i (mS\{i})

}

=


((((((((
exp

{
Rmf loc
i (mS\{i})

}∑
xi

exp
{
Hmf loc

i (xi )
}

(((((((((
exp

{
−Rmf loc

i (mS\{i})
}
exp

{
−Hmf loc

i (xi )
}

RB & HS (ISU STAT) HMRF November 11, 2021 35 / 52



Parameter estimation

Self-consistency condition

The mean field approximation of the joint distribution PG (x) is then given
by the product

Pmf (x) =
∏
i∈S

Pmf
i (xi ) =

∏
i∈S

PG (xi |mN(i))

Note, however, that, to compute Pmf
i (xi ), we need the mean values at

sites j different from i . But these mean values are unknown and it is
actually the goal of the approximation to compute them.

As we shall see, mean field approximation depends on a
self-consistency condition which is that the mean computed based on
the approximation must be equal to the mean used to define this
approximation.
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Parameter estimation

Setting up a fixed point equation

Replace in our previous notation, the exact mean values mj , j ∈ S by the
mean values in the approximation, denoted by x̄j , j ∈ S . The same

expressions hold as before and we shall not modify our notation. For
example,

Hmf
i (xi ) = H(x)|xj=x̄j , j ̸=i instead of Hmf

i (xi ) = H(x)|xj=mj , j ̸=i

and let Emf
i [Xi ] denote the expectation under the new Pmf

i , i.e.,

x̄i := Emf
i [Xi ] = Wmf

i
−1∑

xi

xi exp(−Hmf
i (xi ))

= Wmf loc
i

−1∑
xi

xi exp(−Hmf loc
i (xi )),

where, note, the last expression is a function of just the {x̄j , j ∈ N(i)} we
will denote gi ({x̄j , j ∈ N(i)}).
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Parameter estimation

Mean field approximation

Mean field approximation consists of solving the fixed point equation

x̄ = g(x̄) =


g1({x̄j , j ∈ N(1)})

...

gn({x̄j , j ∈ N(n)})

via fixed-point iteration. We then take

the solution x̄ = {x̄i ; i ∈ S} as an estimate of the exact mean field
m, and

Px̄(x) :=
∏

i∈S Px̄(xi ) =
∏

i∈S PG (xi |x̄N(i)) as an estimate of Pmf (x).
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Parameter estimation

Important considerations

The mean field approximation is optimal (in the sense of the
Kullback-Leibler divergence) among systems of independent variables
(Chandler [1987])

When a solution to the fixed point equation exists, it is usually
computed sequentially (i.e., one x̄i at a time) and iteratively

More generally, we talk about mean-field-like approximations x̃
when the value at site i does not depend on the values at other sites
which are all set to constants (not necessarily the means)
independently of the value at site i
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Parameter estimation

Approximation of PG (x |β)

Suppose we create, from the observations y and some current parameter
estimates Ψ(q−1), a configuration x̃ (q). For each site i , set the neighbors

to x̃ (q)
N(i) and replace the marginal distribution PG (x |β) by

Px̃ (q)(x |β) =
∏
i∈S

PG (xi |x̃
(q)
N(i), β)

The joint distribution PG (y , x |Ψ) is thus replaced by

∏
i∈S

fi (yi |xi , θ)PG (xi |x̃
(q)
N(i), β)
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Parameter estimation

Approximation of PG (x |y ,Ψ(q))

which corresponds to an observed likelihood of the form

Px̃ (q)(y |Ψ) =
∑
x

f (y |x , θ)Px̃ (q)(x |β)

=
∏
i∈S

∑
xi

fi (yi |xi , θ)PG (xi |x̃
(q)
N(i), β)

=
∏
i∈S

PG (yi |x̃
(q)
N(i),Ψ)
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Parameter estimation

Approximation of PG (x |y ,Ψ(q)) (cont.)

The approximation of PG (x |y ,Ψ(q)) derives naturally from the previous
two slides:

Px̃ (q)(x |y ,Ψ(q)) =
f (y |x , θ(q))Px̃ (q)(x |β(q))

Px̃ (q)(y |Ψ(q))

=
∏
i∈S

 fi (yi |xi , θ(q))PG (xi |x̃
(q)
N(i), β

(q))∑
xi
fi (yi |xi , θ(q))PG (xi |x̃

(q)
N(i), β

(q))


=

∏
i∈S

PG (xi |yi , x̃
(q)
N(i),Ψ

(q))

=
∏
i∈S

Px̃ (q)(xi |yi ,Ψ(q))
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Parameter estimation

Mean-field-like approximation of Q(Ψ|Ψ(q))

Finally, having approximated MRFs PG (x |β) and PG (x |y ,Ψ(q)), we write

Q(θ|Ψ(q)) =
∑
i∈S

∑
x

log [fi (yi |xi , θ)] p(x |y ,Ψ(q))

≈
∑
i∈S

∑
x

log [fi (yi |xi , θ)]Px̃ (q)(x |y ,Ψ(q))

=
∑
i∈S

∑
x

log [fi (yi |xi , θ)]
∏
i∈S

Px̃ (q)(xi |yi ,Ψ(q))

=
∑
i∈S

∑
xi

log fi (yi |xi , θ)Px̃ (q)(xi |yi ,Ψ(q))
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Parameter estimation

Mean-field-like approximation of Q(Ψ|Ψ(q)) (cont.)

and

Q(β|Ψ(q)) =
∑
x

log [p(x |β)] p(x |y ,Ψ(q))

≈
∑
x

log [Px̃ (q)(x |β)]Px̃ (q)(x |y ,Ψ(q))

=
∑
x

log

[∏
i∈S

Px̃ (q)(xi |β)

]∏
i∈S

Px̃ (q)(xi |yi ,Ψ(q))

=
∑
i∈S

∑
xi

logPx̃ (q)(xi |β)Px̃ (q)(xi |yi ,Ψ(q))
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Parameter estimation

Choosing the values x̃ (q)

We now have a working estimation procedure. Moreover, recall we have
options on how to produce the x̃ (q), namely

based on the marginal field distribution Px̃ (q)(x |β) or the conditional
field distribution Px̃ (q)(x |y ,Ψ(q))

using the mean, mode, or simulated field algorithms.

We opt for the conditional field distribution since it has the advantage of
taking the observations directly into account and several studies (Celeux
et al. [2003], Archer and Titterington [2002]) give reasons dissuading from
using the mean field approximation on the marginal field.

Regarding the mean-field-like algorithms, we present all three since none of
them consistently outperforms the others across image types.
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Parameter estimation

Final algorithm

1 Produce configuration x̃ (q), i.e., the values of the neighbors:

Let x̃ (q−1+i/n) be (x̃
(q)
1 , ..., x̃

(q)
i , x̃

(q−1)
i+1 , ..., x̃

(q−1)
n ), the configuration

updated until site i . One iteration of the procedure using sequential
updating, consists respectively of,

(see next slide)
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Parameter estimation

Final algorithm (cont.)

1 Produce configuration x̃ (q) (cont.):

Mean field algorithm

x̃
(q)
i =

∑
xi
xi exp

{
−β(q−1) ∑

c∋i Vc

(
xi , x̃ (q−1+i−1/n)

c\{i}

)
+ log fi (yi |xi , θ(q−1))

}
∑

xi
exp

{
−β(q−1)

∑
c∋i Vc

(
xi , x̃ (q−1+i−1/n)

c\{i}

)
+ log fi (yi |xi , θ(q−1))

}
Mode field algorithm

x̃
(q)
i = argmax

xi

fi (yi |xi , θ(q−1))PG (xi |x̃ (q−1+(i−1)/n)
N(i) , β(q−1))

Simulated field algorithm

x̃
(q)
i is simulated from PG (xi |yi , x̃ (q−1+(i−1)/n)

N(i) ,Ψ(q−1)), which is proportional

to fi (yi |xi , θ(q−1))PG (xi |x̃ (q−1+(i−1)/n)
N(i) , β(q−1))
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Final algorithm (cont.)

2 EM iteration:

E step: compute Px̃ (q)(xi |yi ,Ψ(q)) and Px̃ (q)(xi |β) for all i ∈ S

M step: set Ψ(q) = (θ(q), β(q)) with

θ(q) = argmax
θ

∑
i∈S

∑
xi

Px̃ (q)(xi |yi ,Ψ(q)) log fi (yi |xi , θ)

and

β(q) = argmax
β

∑
i∈S

∑
xi

Px̃ (q)(xi |yi ,Ψ(q)) logPx̃ (q)(xi |β)
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Next steps

Continue working on adapting RoadTracer to our needs

Finalize iterative algorithm to produce base undirected graph G

If RoadTracer doesn’t work for us, implement some post-processing
method

Fit HMRF

Look to land uses other than roads
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Thank You
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